• Реклама: 💰 Пополни свой портфель с минимальной комиссией на Transfer24.pro
  • Добро пожаловать на инвестиционный форум!

    Во всем многообразии инвестиций трудно разобраться. MMGP станет вашим надежным помощником и путеводителем в мире инвестиций. Только самые последние тренды, передовые технологии и новые возможности. 400 тысяч пользователей уже выбрали нас. Самые актуальные новости, проверенные стратегии и способы заработка. Сюда люди приходят поделиться своим опытом, найти и обсудить новые перспективы. 16 миллионов сообщений, оставленных нашими пользователями, содержат их бесценный опыт и знания. Присоединяйтесь и вы!

    Впрочем, для начала надо зарегистрироваться!
  • 🐑 Моисей водил бесплатно. А мы платим, хотя тоже планируем работать 40 лет! Принимай участие в партнеской программе MMGP
  • 📝 Знаешь буквы и умеешь их компоновать? Платим. Дорого. Бессрочная акция от MMGP: "ОПЛАТА ЗА СООБЩЕНИЯ"
  • 💰 В данном разделе действует акция с оплатой за новые публикации
  • 📌 Внимание! Перед публикацией новостей ознакомьтесь с правилами новостных разделов

Facebook открыл наработки по распознаванию объектов на фотографиях

Сергей Горин

ТОП-МАСТЕР
Регистрация
03.12.2013
Сообщения
10,426
Реакции
6,813
Поинты
0.000
Лаборатория искусственного интеллекта Facebook продолжила открытие своих наработок и следом за библиотекой классификации текста представила реализацию алгоритмов DeepMask и SharpMask, позволяющих определять наличие объектов на фотографиях и выделять их из общего фона. Код оформлен в виде модулей к библиотеке глубинного машинного обучения Torch, написанных на языке Lua и распространяемых под лицензией BSD.

Целью разработки является предоставление средств для разбора изображений на уровне отдельных пикселей, выделяя отдельные объекты с предоставлением информации о том, что они из себя представляют на основе базы моделей, полученной в результате машинного обучения системы по типовым шаблонам. Предложенные алгоритмы позволяют на основе машинного анализа визуальной информации классифицировать отдельные элементы фотографии, определить что именно изображено и с точностью до отдельных пикселей выделить различные объекты из общего фона.

https://scontent-waw1-1.xx.fbcdn.net/t39.2365-6/14146891_1635044716824695_382934461_n.jpg

DeepMask представляет собой общий алгоритм для выделения сегментов изображения, а SharpMask предоставляет средстве для уточнения результата, в сумме формируя основу для построения систем машинного зрения. Конечная фаза распознавания реализована в виде специализирвоанной свёрточной нейронной сети MultiPathNet, которая позволяет связать выделенные из изображения маски с типами объектов.

https://scontent-waw1-1.xx.fbcdn.net/t39.2365-6/14130015_827196640750163_878790628_n.jpg

https://scontent-waw1-1.xx.fbcdn.net/t39.2365-6/14129678_1295994390440912_1435692944_n.jpg

Для загрузки подготовлены как готовые модели, позволяющие без предварительного обучения системы выявлять такие объекты как животные, люди и автомобили, так и компоненты для обучения системы распознаванию новых типов объектов. Для ознакомления с возможностями системы подготовлен набор демонстрационных примеров. Из планов на будущее отмечается адаптация технологии для выделения движущихся объектов на видео.

https://scontent-waw1-1.xx.fbcdn.net/t39.2365-6/14146890_1730515210543559_1986941892_n.jpg



 
Последнее редактирование:
Сверху Снизу